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TWO PHOTON SPECTROSCOPY OF PYRAZINE AND TRIAZINE

J. D. WEBB, K. M. SWIFT and E. R. BERNSTEIN
Colorado State University, Department of Chemistry, Fort Collins, Colorado
80523 (U.S.A.)

ABSTRACT

Two photon absorption spectra, detected by fluorescence, phosphorescence, anc
photoacoustic methods are presented for pyrazine and triazine. Vibronic assign-
ments are made in both systems based on polarization and contour analysis. For
pyrazine, origin intensity is observed which suggests the Hﬁ%ujstate does not
possess inversion symmetry. Linear, quadratic, and pseudo-Jahn Teller couplings
are discussed for triazine.

INTRODUCTION

Multiphoton spectroscopy has recently received a good deal of attention,
particularly with regard to its application to molecular systems (ref. 1). The
motivations behind such investigations of typically well studied systems (e.g.,
benzene and pyrazine) are: new selection rules allow photophysical and photo-
chemical studies of different excited electronic and vibronic states; multiphoton
transitions may reach vacuum ultraviolet regions with high resolution and relative
ease; it is possible to obtain polarized spectra (with linearly and circulafly
polarized photons) even in isotropic liquids and gases; using counter propagating
beams, Doppler free high resolution gas phase spectra can be observed; intense
electric dipole transitions in bulk materials can be more easily studied; and infra-
red multiphoton photochemistry, photophysics, and isotope separation can be pursued.

As with most laser spectroscopic techniques it turns out to be most useful to use
what may be called secondary detection techniques; that is, it is not the loss of
photons from the laser beam that is monitored during an experiment, but some ensuing
molecular process (i.e., emission of photons, sound or heat pulses, or electrons).
In this work we use fluorescence, phosphorescence, and photoacoustic techniques to
detect the primary (two photon) absorption process.

The systems studied are 1-10 torr of pyrazine and triazine. Both of these
molecules are relatively well studied over the past 25 years because of their
general interest for N-heterocyclic photochemistry and photophysics. _Iriazine
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(D3h symmetry--symmetric top) has dipole forbidden (two photon allowed) "35"
first excited states. Strong vibronic (inter- and intra-state) coupling is
expected for both these states. Location of nt* and nn* excited states and
determination of their geometry is essential for an understanding of the series.
Pyrazine (D2h symmetry--asymmetric top) has a ]B3u first excited singlet state
which is vibronically allowed in two photon spectra. Aside from the general
interest in vibronic structure and geometry of this system, the location of other
nr* states, particularly the two photon allowed 1Bzg arising from "'(blu) and
n(b3u) orbitals, has been of long-standing interest and considerable importance.

In the following section is presented a brief discussion of experimental tech-
niques. In Section III, results and their interpretation are given. Analysis
of these data is at present somewhat tentative, due to the occurrence of strong
intrastate vibronic coupling (1inear Jahn Teller - LJT, quadratic Jahn Teller -
QJT effects) and interstate vibronic coupling (pseudo Jahn Teller - PJT effect).
A more complete and detailed analysis will rely heavily on calculations
(similar to those on transition metal hexafluorides - ref. 2) and contour
simulations presently in progress.

For this paper we discuss assignments, nature and source of vibronic inter-
actions, and qualitative features of geometry and symmetry that are apparent
from the spectra.

EXPERIMENTAL

Samples were vacuum distilled through molecular sieve to remove all traces of
water and air. Triazine was fused with potassium prior to distillation. Three
different detection methods were employed for these experiments but all had the
general design given in Figure 1. Fluorescence detection apparatus was the same as

BOXCAR RECORDER
INTEGRATOR
A [ ]
A/®
VANIC
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PULSEODYE]. . . . . POWER
LASER [ METER
[T 1/30  PHOTOACOUSTIC
tem™ LENS CELL

Fig. 1. Experimental apparatus for multiphoton spectroscopy photoacoustically
detected. For emission detection, the microphone is replaced with photomulti-
plier tube.
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the photoacoustic depicted with the microphone reolaced with a cooled RCA 8850
phototube. Phosphorescence times were long enough to employ digital boxcar tech-
niques with photon counting. Spectra are calibrated to 0.1 cm'] with the opto-
galvanic effect using an Fe-He hollow cathode lamp.

RESULTS AND DISCUSSION
Pyrazine

We begin discussion of results with pyrazine because they are more simple to
analyze. Figure 2 shows a portion of the two photon spectrum of pyrazine photo-
electrically detected. Well developed, rather broad contours obtain. The major

Pyrazine

Detection Method: fluor

phosphorescence

i  —
e o T

3000
Two Photon Energy (cm-!)

Fig._Z. Pyrazine two photon spectra of 1B3u state. Photoelectrically detected;
origin marked with arrow.

fluorescence signal is due to CN (cyanyl) emission. This diatomic radical is
created photochemically following pyrazine two photon absorption. The large
signal at about 32,000 c:m'1 is due to two photon absorption of ground state CN
followed by fluorescence. Polarized higher resolution photoacoustically detected
spectra presented in Figure 3 (which do not evidence CN) show totally symmetric
peaks due to b, vibrations (16bé and 116 ). This figure shows origin intensity
which is unpolarized. Spectra taken at 100°C do not show any increase or variation
in this intensity relative to other features; thus it is probably not sequence
structure. We tentatively conclude that this is oriqin intensity and therefore the
molecule has lost its inversion symmetry in the ]BBu state.

A thorough search for the ‘Bz state 1000 cm" to lower energy than the 0-0
transition of ]B3u and up to 2000 en”! to higher energy than the 0-0 gave no hint
of this two photon allowed state.
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Fig. 3. Same as Figure 2 but polarized and photoacoustically detected, origin
marked with arrow.

Triazine
Triazine represents a far more complicated situation than does pyrazine due to

strong Jahn Teller coupling (e.g., e' modes vg and vg) and strong pseudo Jahn
Teller (e.g., e' modes and e'' modes vy and v;g). This situation obtains, of
course, because of the degenerate e1ectronic state E'' and the 1ncreased density
of the excited electronic manifold (A1 , A2 ’ E nn* states and A‘. 2 E av*
states).

Figure 4 presents a comparison of the one and two photon spectra of this
molecule. Notice in particular that there is little overlap belween the two spectra
even though D3h selection rules indicate many coincidences should be present. Most
importantly, however, the E'' (perpendicular) origin is observed and assigned based

s-triazine

1photon

31200 E(cm) 32000
326 AE(em) 1126
(origin)

Intensity

Fig. 4. Sym-triazine E'' spectra.
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on its contour which was matched with computer simulation. Again, CN emission
can be used to detect the absorption photoelectrically; photoacoustic detection
shows small intensity differences between the two techniques. Detailed polariza-
tion studies (Figure 5) allow e'' modes 105 (430 cm’]) and 166 (300 cm',) to be

s-Triazine '

Polarization E

, linear
A,

circular

> P e S :
Two Photon Energy(cm-')

Fig. 5. Polarized, photoacoustically detected portion of triazine spectrum.

1dent1f1ed These have been shifted from their ground state values (340 and

1031 cm” ) and sp11t due to PJT coupling with nn* states of A]. 20 OF E symmetry.
The origin and 6 (e') at 550 cm = have the same contour (Figure 6) and polari-

zation behavior and are identified as E'' vibronic components of JT active modes.

TWO puOTON

PHOTOACOUSTIE  — 357 em™ |
seecTRUM OF € vienowic
s-TRIAZINE CoupONENT
o \I.l"\
)
1Sem™

Fig. 6. Comparison of three E'' vibronic features (E'' x e') in the triazine
spectrum.

When compared to the one photon spectra in Figure 4, the other 68 component (Aé )
is located at 670 cnfl. Such a splitting is inconsistent with LJT coupling in
sign and can only arise through: a) PJT coupling; b) QJT coupling; c) strong
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mixing of e' modes. The precise mechanism for such strong higher order effects is
presently under consideration but is not without precedent (refs. 3, 4).

Finally the feature at 200 cm'] (Figure 6) is similar to the origin and 6; (E*")
in contour and polarization behavior leading one to assign it as an e' vibration. A
tentative assignment for this feature is 88 (v;. (e') 1570 cm'1). Such a large change
in frequency upon ?xcitation would bgldue to PJT coupling as is found in 381u 80 of
Cells (refs. 3,4)(va 340 em™! while vy 1595 cm™)). The PJT coupling would take place
with E'', A2 , or A" D3h nn* electronic states. Again this assignment must be
viewed as tentative pending completion of confirming vibronic coupling and contour
calculations.
CONCLUSIONS

It is clear from the discussion, as well as the presented figures, that phosphor-
escence, fluorescence, and photoacoustic detection are all applicable to two photon
spectroscopy. Different detection techniques emphasize different aspects of molecu-
lar photophysical and photochemical processes. For pyrazine it is possible toobserve
two photon spectra by all three techniques but for fluorescence detection cyanyl (CN)
emission was the major component of the signal. A number of vibrations are assigned
based on polarized spectra and known coincidences. Apparent ron-hot band intensity at
the origin of the 1830 state indicates that this state may have lost its inversion
symmetry. The E'' origin of the first excited singlet state of triazine was located
and assigned. Vibronic states 165 (e'') and 103 (e'') were identified by polariza-
tion studies; both modes are shifted and split by PJT coupling with nn* states. JT
ac}jve e' modes were assigned: 63 (E'' component) is placed at 560 cm'1 with its 65
(A2 component) partner at 660 cm~1; and 88 (E'' component) highly perturbed is
tentatively suggested to lie at about 200 cn ! above the Tgor origin.
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